

Билирубин общий, FS*

Диагностический реагент для количественного определения общего билирубина in vitro в сыворотке или плазме крови при помощи анализатора DiaSys respons®910

Сведения о заказе

№ кат. 1 0811 99 10 920

4 спаренных блока по 200 реагентов в каждом

Метод анализа

Фотометрический метод, с использованием 2,4-дихлоранилина (ДХА)

Принцип определения

В кислой среде, в присутствии диазотированного 2,4-дихлоранилина, прямой билирубин образует азосоединение красного цвета. Специальная смесь детергентов позволяет осуществлять безопасное определение общего билирубина.

Реагенты

Компоненты и их концентрации

P1: Фосфатный буфер 50 ммоль/л NaCl 150 ммоль/л

Детергент, стабилизирующие

агенты

Р2: 2,4-Дихлорофенил-диазониевая

5 ммоль/л

соль

HCI 130 ммоль/л Детергент 130 ммоль/л

Инструкции по хранению и стабильность реагента

Реагенты стабильны до конца месяца, указанного в сроке годности, при хранении при 2 - 8°C, в защищенном от света месте. Не допускать загрязнения. Контейнеры с реагентами DiaSys respons обеспечивают защиту от света. Не замораживать реагенты!

Меры предосторожности

- 1. Реагенты: S24/25: Избегать контакта реагентов с кожей и глазами.
- 2. Реагент 1: S61: Не допускать выделения в окружающую среду. Следуйте положениям специальных инструкций/паспортов безопасности.
- 3. В очень редких случаях образцы, полученные у пациентов с гаммапатией, могут давать искаженные результаты.
- 4. Ознакомьтесь с паспортом безопасности и примите надлежащие меры предосторожности при использовании лабораторных реагентов. Во время диагностирования результаты всегда следует оценивать вместе с историей болезни пациента, результатами клинического обследования и другими данными.

Обезвреживание отходов

В соответствии с местными нормативными требованиями.

Подготовка реагентов

Реагенты готовы к использованию. Ампулы помещаются непосредственно в ротор для реагентов.

Исследуемые образцы

Сыворотка или гепаринизированная плазма

Важно: храните образцы в защищенном от света месте!

Стабильность [1]:

1 день при 20 - 25 °C 7 дней при 4 - 8 °C 6 месяцев при -20 °C в случае незамедлительной заморозки.

Только однократная заморозка. Загрязненные образцы хранению не подлежат.

Калибраторы и контрольные образцы

Для калибровки рекомендуется калибратор TruCal U компании DiaSys. Присвоенные значения для общего билирубина имеют прослеживаемую связь с эталонным образцом SRM 916. Для внутреннего контроля качества с каждой серией образцов проводите измерение контрольных сывороток TruLab N и P компании DiaSys. Каждая лаборатория должна предусмотреть корректирующее действие в случае искажений при возврате контрольного параметра к заданной величине.

	№ кат.	Фасовка
TruCal U	5 9100 99 10 063	20 х 3 мл
	5 9100 99 10 064	6 х 3 мл
TruLab N	5 9000 99 10 062	20 х 5 мл
	5 9000 99 10 061	6 х 5 мл
TruLab P	5 9050 99 10 062	20 х 5 мл
	5 9050 99 10 061	6 х 5 мл

Рабочие характеристики

Пределы измерения от 30 мг/дл билирубина (в случа	е повышенной концентрации произвести
повторное измерение в образцах после разведения	я вручную или использовать функцию
повторного исследования).	
Предел обнаружения**	0.11 мг/дл билирубина
Стабильность в анализаторе	4 недели
Стабильность после калибровки	3 дня
	l l

Интерферирующее вещество	Искажения < 10%	Общий билирубин [мг/дл]
Аскорбиновая кислота	до 30 мг/дл	2.26
Напроксен	до 1 ммоль/л	0.46
Гемоглобин	до 100 мг/дл	1.17
	до 500 мг/дл	15.2
Липемия (триглицериды)	до 1000 мг/дл	1.29
	до 2000 мг/дл	13.3
Для дополнительной информации об интерферирующих веществах, см. Янг Д.С. [2].		

Воспроизводимость			
Число измерений (n=20)	Образец 1	Образец 2	Образец 3
Среднеарифм.значение [мг/дл]	0.85	1.03	6.86
Коэф.вариации [%]	1.85	2.31	0.93
Между сериями (n=20)	Образец 1	Образец 2	Образец 3
Среднеарифм.значение [мг/дл]	0.75	1.84	6.82
Коэф.вариации [%]	4.60	3.67	0.95

Сравнение методов (n=94)		
Реагент х	DiaSys Bilirubin AT FS (Hitachi 911)	
Реагент у	DiaSys Bilirubin AT FS (respons®910)	
Угловой коэффициент	1.028	
Интерсепт	0.036 мг/дл	
Коэф.корреляции	0.999	

^{**} Согласно документу NCCLS (Национальный комитет по клиническим лабораторным стандартам) EP17-A, том 24, № 34

Множитель конверсии

Билирубин [мг/дл] \dot{x} 17.1 = Билирубин [мкмоль/л]

Референсные значения [3]

Новорожденные	24 ч 2-й день 3-й день 4й-6й день	[мг/дл] <8.8 1.3-11.3 0.7-12.7 0.1-12.6	[мкмоль/л] <150 22-193 12-217 1.7-216
Дети	> 1 месяц	0.2-1.0	3.4-17
Взрослые		0.1-1.2	1.7-21

В каждой лаборатории необходимо проверить, применимы ли референсные значения к собственному контингенту пациентов, и определить собственный диапазон референсных значений, при необходимости.

Литература

- 1. Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p. 18-9.
- 2. Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th. ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press, 2000.
- 3. Thomas L ed. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: THBooks Verlagsgesellschaft, 1998: p. 192-202.
- 4. Tolman KG, Rej R. Liver function. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1125-77.
- 5. Rand RN, di Pasqua A. A new diazo method for the determination of bilirubin. Clin Chem 1962; 6: 570-8.

Изготовитель

IVD (диагностика in vitro) CE (знак соответствия директивам EC) DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Хольцхайм, Германия

Билирубин общий, FS

Применение в образцах сыворотки и плазмы

Данное применение было исследовано и установлено компанией DiaSys. Оно основано на использовании стандартного оборудования и не применяется к другим модификациям оборудования используемого неквалифицированным персоналом.

Herbas May Indiana Peranti Billi Herbas Has Tell	1.	
Идентификация		
Метод пригоден для анализа:	Да	
Название:	TBIL	
Сокращение:		
Код штрих-кода на реагенте:	019	
Ссылка на основное устройство:		

Методика	
Тип:	По конечной точке
Первый реагент: [мкл]	180
Корректировка холостой пробы	Да
Второй реагент: [мкл]	45
Корректировка холостой пробы	Да
Основная длина волны:[нм]	546
Дополнительная длина волны:[нм]	660
Полихроматический коэф.:	1.000
Время 1-го считывания [мин:сек]	(04:24)
Время последнего считывания [мин:сек]	09:00
Вид реакции:	Повышение
Линейная кинетика Истощение субстрата: предел поглощения	

Линейность: максимальное отклонение [%]	
Кинетика с фиксированным временем	
Истощение субстрата: предел поглощения	
Стабильность в конечной точке: наибольший	-
остаточный угловой коэф.	
Предел прозоны [%]	-

Образец	
Разбавитель	NaCl
Технические пределы концентрации –нижний	0.11
	30
Технические пределы концентрации –верхний	30
СЫВОРОТКА	
Нормальный объем [мкл]	5
Нормальный фактор разведения	1
Ниже нормального объема [мкл]	8
Ниже нормального фактора разведения	1
Выше нормального объема [мкл]	2
Выше нормального фактора разведения	1
МОЧА	
Нормальный объем [мкл]	5
Нормальный фактор разведения	1
Ниже нормального объема [мкл]	8
Ниже нормального фактора разведения	1
Выше нормального объема [мкл]	2
Выше нормального фактора разведения	1
ПЛАЗМА	
Нормальный объем [мкл]	5
Нормальный фактор разведения	1
Ниже нормального объема [мкл]	8
Ниже нормального фактора разведения	1
Выше нормального объема [мкл]	2
Выше нормального фактора разведения	1
Спинно-мозговая жидкость	
Нормальный объем [мкл]	5
Нормальный фактор разведения	1
Ниже нормального объема [мкл]	8
Ниже нормального фактора разведения	1
Выше нормального объема [мкл]	2
Выше нормального фактора разведения	1

Спектр действия	
Категория	Мужчины
Возраст	
СЫВОРОТКА	>=0.1 <=1.2
МОЧА	
ПЛАЗМА	>=0.1 <=1.2
Спинно-мозговая жидкость	
Категория	
Возраст	
СЫВОРОТКА	
МОЧА	
ПЛАЗМА	
Спинно-мозговая жидкость	

Загрязняющие вещества	
Загрязнитель 1	
Промыть с	
Цикличность	
Объем [мкл]	
Загрязнитель 2	
Промыть с	
Цикличность	
Объем [мкл]	

Данные о калибраторах	
Список калибраторов	Концентрация
Кал. 1	0
Кал. 2	*
Кал. 3	*
Кал. 4	*
Кал. 5	*
Кал. 6	*
	Макс. допустимые отклонения (абс.)
Кал. 1	0.015
Кал. 2	0.005
Кал. 3	
Кал. 4	
Кал. 5	
Кал. 6	
Предел смещения [%]	0.8
Вычисления	I
Модель	Х степень
Степень	1

^{*} Введите значение калибратора